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Abstract—We justify the claim that all kinds of data mining aim at constructing compressed
and simplified descriptions of information. We propose passing from the binary absolute measure
of similarity between objects to a ternary relative measure: a function of rival similarity (FRiS-
function). Its use enables us to obtain a quantitative estimate for the compactness of data and
construct new, more effective cognitive analysis methods. We present examples of solutions to
various model and real problems by the new methods.
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INTRODUCTION

The most important problem in cognitive data mining is to systematize and structure the results
of observations or experiments in a simplified and compressed form accessible for understanding and
further use. We can compress information, for instance, by decreasing the number of objects considered
and replacing the entire sample with a small number of its typical (standard) representatives. Another
version of data compression decreases the number of characteristic features. In this case, we choose from
the set of observable features those most relevant to the problem in question. Using these approaches,
we can pass from initial data of arbitrarily large size a tangible compressed description. The main
requirement imposed on this description is the condition that the dependencies important for the problem
in question must be retained.

A compactness conjecture helps us to ensure that pattern recognition meets this requirement. In the
framework of the conjecture, we posit the existence of a feature space in which all objects of the sample
are divided into easy to distinguish compact groups (clusters) of similar objects. Similarity within the
groups enables us to replace the set of objects in each group by a standard object, while a reasonable
choice of the subset of features ensures that each group is homogeneous with respect to the initial
classification, the information about which we must keep.

It currently remains an open question how to estimate the compactness of data. The definition of
compactness in [1] rests on the ratio of the number of “interior” and “boundary” points representing
the objects of the patterns in the feature space. Instead of one quantitative characteristic, [2] calculates
a “compactness profile” reflecting the dependence of the number objects of “its own” pattern in a local
neighborhood of each object of the sample on the radius of this neighborhood. The compactness of
clusters is estimated in [3] by averaging the squared distance from the objects to the centers of their
clusters.
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Fig. 1. Rival similarity of objects a and z

In this article, we present a new method for obtaining a quantitative estimate for the compactness
of patterns based on a measure of similarity between the objects, which we call the function of rival
similarity, FRiS-function [4]. The use the FRiS-function enables us to develop new cognitive analysis
methods aimed at data compression, making them more universal, noise immune, and insensitive to the
distribution of patterns and the ratio of the numbers M and N of objects and features. Furthermore, the
orientation at the compactness conjecture ensures good agreement with the requirements of cognitive
computations regarding the transparency of the solution process and the interpretability of the results.

Following the description of the proposed FRiS-method for estimating compactness, we briefly
survey the algorithms based on it for solving known and some new data mining problems and present
the results of solving some model and applied problems.

1. THE FUNCTION OF RIVAL SIMILARITY

We often use standard objects to measure the weight, length, resistance, and other characteristics of
objects. The result of a measurement is determined solely by the properties of the measured and standard
objects, but is independent of the properties of other objects. For this reason, the result is an absolute
quantity. However, objects can be described by characteristics like “similar/dissimilar”, “near/far”,
“good/evil”, and so forth. There are no standards for this kind of features. Two objects with distinct
properties can be regarded as “similar” or “dissimilar”, “near” or “far” depending on the properties of
other objects. For instance, in Fig. 1 the distance between objects a and z remains the same, but the
answers to the question whether they are sufficiently close to each other to be gathered in one class are
different in all three cases.

Adequate similarity measures must depend on the particular features of the rival surroundings of z.
In the attempted recognition whether an object z belongs to one of two patterns A and B using heuristic
recognition algorithms based on the similarity of objects, it is important to know not only the distance
r(z,A) from z to the pattern A, but also the distance r(z,B) from z to the rival pattern B. Consequently,
in pattern recognition similarity is a relative category rather than absolute. Note that depending on
the specifics of the problem in question the distance r(z,A) from an object z to an pattern A can be
calculated in different ways. We may use either the distance r(z, a) to the nearest object a of A, or the
average distance to all its objects, or the average distance to its k nearest objects, or the distance to its
center of mass, and so forth. For instance, in the method of k nearest neighbors (kNN) a new object z
is recognized as an object of the pattern A whenever the average distance r̄(z,A(k)) from z to k nearest
objects of this pattern is not only small, but is less than the average distance r̄(z,B(k)) to k nearest
objects of the rival pattern B. In this algorithm, we estimate similarity on the order scale.

The RELIEF algorithm [5] uses a more complicated similarity measure. In order to define the
similarity of an object z to an object a in competition with an object b, it uses a quantity accounting
for the normalized difference of the distances r(z, a) and r(z, b):

W (z, a|b) =
r(z, b) − r(z, a)

rmax − rmin
.

Here rmin and rmax are the minimal and maximal distances between all pairs of objects of the analyzed
set.
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In order to estimate the “silhouette width,” [6] measures the average distance r̄(z,A(M)) from
an object z ∈ A to all M objects of A and the distance r(z, b) from z to the nearest object b /∈ A. The
measure of similarity of z to the objects of A is taken to be

S(z,A|b) =
r̄(z,A(M)) − r(z, b)

max{r̄(z,A(M)), r(z, b)} .

We propose to use a FRiS-function to calculate the similarity of objects. This is a ternary relative
measure estimating the similarity of an object z to an object a in competition with an object b:

F (z, a|b) =
r(z, b) − r(z, a)
r(z, b) + r(z, a)

. (1)

As z moves from a to b, we can speak firstly about great similarity of z to a; then about their moderate
similarity; then about the onset of the same similarity, equal to zero, to both a and b. As z further moves
toward b, first moderate, and then large differences between z and a appear. The coincidence of z and b
means the maximal distinction of z from a, which corresponds to the similarity of z to a equal to −1.

Both the distance r between objects and the similarity F between them are independent of the
location of the origin of the coordinate system, the rotations of the coordinate axes, and the simultaneous
multiplication of their values by the same quantity. However, independent changes in the scale of different
coordinates change the contribution of separate peculiarities to both distance and similarity estimates.
Thus, the similarity of objects depends on the weights of different features. Changing these weights, we
can emphasize the similarity or distinction of the specified objects, which is usually done when choosing
relevant features and constructing decision rules in pattern recognition.

Similarity in the order scale in the kNN method answers the question the objects of which pattern
object z is most similar to. Rival similarity measured using the FRiS-function answers this question, and
moreover, the question what the absolute value is of the similarity of z to the objects of A in competition
with the objects of B. It turned out that the additional information which the absolute scale yields
in comparison with the order scale enables us to substantially improve data mining methods.

We define the rival similarity of objects to patterns following the same principle as the rival similarity
of objects to objects:

F (z,A|B) =
r(z,B) − r(z,A)
r(z,B) + r(z,A)

.

In the case of normally distributed patterns with the same covariance matrices, we can calculate the
rival similarity of an object to these patterns via the similarity to their average. However, if the patterns
have very complicated structure then, for calculating the FRiS-function, we can only inspect the local
neighborhood (the nearest neighbors) of the object it is calculated for.

Solving the recognition problem on assuming that it is possible to estimate the variances dA and
dB of the distributions of the rival patterns A and B, we have to use the normalized distances from the
object z to the patterns A and B. The resulting normalized function of rival similarity is

Fd(z,A|B) =
dAr(z,B) − dBr(z,A)
dAr(z,B) + dBr(z,A)

.

One of the methods for extracting the specific peculiarities of data in the recognition problem is to
pass to their compressed description using sets of standard representatives of each pattern which retains
the basic dependencies necessary for good recognition of both the objects of the initial sample and new
objects. Henceforth, we refer to these standard objects as stolps. The more complicated is the structure
of the patterns and the stronger they intersect , the more stolps we will need to describe the data. If
we manage to construct this description of data and pass from A and B to stolp sets SA and SB for
these patterns then we can calculate the rival similarity of the object z to the pattern A in competition
with B as F (z, SA|SB). Calculating rival similarity using the compressed description rather than the
whole sample, we can adapt this measure to the specific features of the problem in question.
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Fig. 2. Estimates for the defensibility and tolerance of the object ai ∈ A

2. THE CHOICE OF STANDARD OBJECTS. ALGORITHM FRiS-Stolp

In order to construct a compressed description of data as a system of stolps, we use the FRiS-Stolp
algorithm [7]. It works for every ratio of the number of objects to the number of features, as well as for
arbitrary distributions of the patterns.

As the stolps we choose the objects with high values of the two properties: defensibility with respect
to the objects of its own pattern and tolerance with respect to the objects of other patterns. The higher is
the defensibility of a stolp, the fewer errors of the first kind (missing the goal) will occur. The higher is the
tolerance of a stolp, the fewer errors of the second kind (false alarm) will occur. We regard a collection of
stolps as sufficient to describe the sample whenever the similarity F of all objects of the training sample
to the nearest its own stolps in competition with the nearest objects of the other patterns exceeds the
threshold value F ∗, for instance, F ∗ = 0.

Let us use Fig. 2 to illustrate a method for estimating the tolerance and defensibility of an object
on an example of the recognition problem for two patterns A = {a1, . . . , aMA

} and B = {b1, . . . , bMB
}

expressed respectively as tuples of MA and MB objects of the training sample.
Verify whether the object ai defends well the objects aj of pattern A, for j = 1, . . . ,MA. For the object

aj , define the distances r(aj , ai) and r(aj, bj′), where bj′ ∈ B is the nearest neighbor of aj ; thus,

j′ = arg min
m=1,...,MB

r(aj , bm).

Using (1), we obtain the value F (aj , ai|bj′) of the similarity function of aj to ai ∈ A in competition with
bj′ ∈ B (see Fig. 2). Select those objects aj ∈ A for j = 1, . . . ,MA whose similarity to ai is at least the
specified threshold F ∗; thus, F+

j = F (aj , ai|bj′) − F ∗ ≥ 0. These objects are defended well by ai. We
obtain the estimate D for the defensibility of ai:

D(ai) =
MA∑

j=1

F+
j

∣∣
F+

j ≥0
.

Now estimate the tolerance of ai which measures the dissimilarity to ai of the objects of pattern B.
For every bn ∈ B with n = 1, . . . ,MB , calculate the distances r(bn, ai) and r(bn, bn′), where bn′ ∈ B is
the nearest neighbor of bn. Using (1), find the similarity F (bn, bn′ |ai) of bn to bn′ in competition with
ai (see. Fig. 2). Select the objects of pattern B with F−

n = F (bn, bn′ |ai) − F ∗ < 0 for n ∈ {1, . . . ,MB}.
These objects are more similar to ai than to the nearest objects of their own pattern, which negatively
affects the estimate for ai. We obtain the following estimate T for the “intolerance” of object ai:

T (ai) =
MB∑

n=1

F−
n |F−

n <0.

We estimate the quality of object ai in the role of a stolp of A as S(ai) = D(ai) + T (ai).
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Note some specific characteristics of the FRiS-Stolp algorithm. Independently of the distribution of
the training sample, we choose as stolps the objects lying near the centers of local clusters and defending
as many objects as possible with a specified reliability. For normal distributions we choose as stolps first
of all the objects nearest to the expected value. Consequently, as the distribution approaches a normal
one, the solution to the problem of constructing decision functions tends to the statistically optimal. If
the distributions are polymodal and the patterns are linearly inseparable then the stolps lie at the centers
of the modes.

We can use the compressed description of the patterns as stolp sets to recognize new objects. The
process of recognition consists in the following:

(1) Find the distances from the control object z to two nearest stolps belonging to different patterns.
(2) The object z will belong to the pattern whose stolp is closer.
(3) Using the distances, evaluate the function of rival similarity F of the object to the patterns. The

quantity F enables us to judge the reliability of the decision made.

If the number K of the patterns is greater than two then in constructing the stolps for the pattern Ak

with k ∈ {1, . . . ,K}, we gather the objects of all remaining patterns into one virtual pattern

Bk =
⋃

i=1,...,K, i �=k

Ai.

3. FRiS-COMPACTNESS

Given an object a ∈ A, the measure of rival similarity of this object to its own pattern in competition
with an pattern B shows how much this object is similar to its own pattern and dissimilar to B. If this
quantity is positive for all objects of A then we may regard this pattern as compact since this situation
agrees well with the intuitive representation of compactness as the similarity of objects in the pattern
and their dissimilarity to the objects of the competing pattern. Thus, calculating the average value of the
FRiS-function over all objects of A, we can estimate the compactness of this pattern. Furthermore, if
we calculate the FRiS-function basing on stolps then this compactness estimate automatically adapts
to the specific characteristics of the data.

In the case of two patterns A = {a1, . . . , aMA
} and B = {b1, . . . , bMB

} we propose the following
version of the compactness estimate.

(1) Using the FRiS-Stolp algorithm, construct c stolps of the patterns A and B; hence, c = cA + cB ,
where cA and cB are the numbers of stolps of the patterns A and B respectively.

(2) For every element ai ∈ A, estimate the similarity to its own nearest stolp sA(ai) in competition
with the nearest stolp sB(ai) of B. Then calculate the FRiS-compactness of A in competition with the
pattern B as

CA|B =
1

cAMA

(
MA∑

i=1

F (ai, sA(ai)|sB(ai)) − cA

)
. (2)

(3) Similarly calculate the FRiS-compactness CB|A of B in competition with A.
(4) Obtain the compactness estimate for A and B as the average of the values of CA|B and CB|A.
Observe that the number cA of clusters of A depends on the structure of the distribution of objects and

the threshold F ∗: as F ∗ grows, the number of clusters and the accuracy of description of the distribution
increase, but so does the complexity of the description, that is, the factor 1/cA is the penalty for the
structural complexity of the pattern.

If the number of patterns K is greater than two then to estimate the compactness of Ak fork ∈
{1, . . . ,K}, we gather the objects of all remaining patterns into one virtual pattern Bk. With the
compactness estimates CAk|Bk

for k = 1, . . . ,K of all patterns already at hand, we can obtain the total
estimate for their compactness in this feature space as their mean:

C =
1
K

K∑

k=1

CAk|Bk
.
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If we seek to maximize the FRiS-compactness of the least compact pattern then we have to use the
average estimate

C = K

√√√√
K∏

k=1

CAk|Bk
. (3)

Our experiments with these two FRiS-compactness criteria showed the superiority of the second
of them (see [8]).

The FRiS-compactness of patterns equals 1 whenever all objects of each pattern are mapped to their
own separate points. If, at every nonempty point of the space, there is one object of at least two patterns
then the distance to the nearest its own object is more than 0, while the distance to the nearest foreign
object equals 0, and the FRiS-compactness of the patterns equals −1. All remaining distributions yield
the values of FRiS-compactness in the range from −1 to 1.

4. THE CHOICE OF STOLPS FOR A SET OF UNCLASSIFIED OBJECTS.
THE FRiS-TAX ALGORITHM

We showed above how to obtain a compressed description of the structure of data by selecting a set
of typical representatives from the sample for the recognition problem in which for each object we know
by name the class it belongs to.

Let us show how we can construct a collection of stolps for the taxonomy problem, in which the
names of the classes for all objects of the sample are unknown. To store the information on the structure
of the initial data, we place stolps at the centers of the zones of local clusters of objects so that the objects
in each cluster are more similar to its stolp than to all other stolps.

Since here the terms “similar/dissimilar” appear again, it is natural to suppose that a function of rival
similarity will enable us to solve this problem. It is only necessary to redefine this function for the case of
unclassified data, when beforehand it is unknown which objects of the sample are “its own”, and which
are “rival”. We assume that they all belong to an pattern A. Then, as the distance from an arbitrary
object a to its pattern we take the distance r(a,A) to the pattern A. In order to create a competitive
situation we introduce a virtual pattern B, the distance to which from every object of the initial sample
(that is, the pattern A) is fixed at r∗. The resulting FRiS-function for the taxonomy problem is

F (a,A|B) = (r∗ − r(a,A))/(r∗ + r(a,A)).

It is rather easy to imagine how the virtual pattern B looks. To the n-dimensional space in which the
sample A is described, we have to add the (n + 1)st coordinate whose value for the objects in A is set
to zero. Then we can take as B the set points coinciding with the objects of A in the space of the first n
features for which the value of the (n + 1)st feature equals r∗.

The FRiS-Cluster algorithm, which chooses a system of stolps for an unclassified sample, is a part
of the FRiS-Tax algorithm [9] for solving the taxonomy problem. On the first stage of FRiS-Tax, we
run a procedure for choosing stolps and dividing the objects of an unclassified sample into linearly
separable clusters. This partition can already be regarded as the result whenever the expect is satisfied
with its quality. Otherwise, we forward the resulting clusterization to the second stage, the FRiS-Class
algorithm, which analyzes the situation at the boundaries of clusters and combines some neighboring
clusters into the classes of arbitrary form (taxons) which are not necessarily linearly separable.

Fig. 3 depicts the results of solving the problem of classifying the metal alloys according to their
chemical composition. The sample consisted of the X-ray spectra of 160 sample alloys divided into
5 groups by their chemical composition. Every spectrum was represented as a vector of dimension
1024. We partitioned the sample into classes, whose number varied between 2 and 15, using several
available taxonomy algorithms. The quality of taxonomy was estimated by the chemical homogeneity of
the clusters in terms of entropy.

We compared five algorithms: FRiS-Cluster; FRiS-Tax; the Forel algorithm rolling the objects into
clusters of spherical shape [10]; the Scat algorithm [10] constructing from the clusters created by the
Forel algorithm taxons of a more complicated form; and the most popular k-means algorithm [3, 11].

These results show that the taxonomy constructed by the FRiS-Tax algorithm is better than those
obtained by the other algorithms used for the comparison. Moreover, this algorithm enables us to
automatically determine the preferable number of clusters from the first local maximum of FRiS-
compactness.
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Fig. 3. The dependence of the quality of taxonomy on the number of taxons for
algorithms FRiS-Cluster (1), k-means (2), Forel (3), Scat (4), and FRiS-Tax (5)

5. GENERALIZED CLASSIFICATION. THE FRiS-TDR ALGORITHM

We introduced above the function of rival similarity for classified and unclassified samples and
considered the algorithms for constructing a concise description of data using typical representatives.
Proceed now to a more general case when the sample includes both classified and unclassified objects.
Mixed samples of this type appear in the semi-supervised learning problem.

This problem is an intermediate step between the taxonomy and recognition problems. In solving
this problem, to construct decision rules we use both objects with specified names of the classes and
objects for which the names of the classes are unavailable. If the number of unclassified objects in the
sample is considerably greater than the number of classified objects then we use the information on the
properties of unclassified objects, which enables us to better understand the properties of the sample and
construct a decision rule of higher quality in comparison with what would be constructed basing only on
the classified objects in the framework of the recognition problem.

Consider how the technique for calculating the function of rival similarity for the objects to “their
own” classes will change as we pass to a mixed sample Vmix containing both classified and unclassified
objects. In the case of the recognition problem of two patterns A and B, we can divide all objects of the
mixed sample into the three groups: Vmix = A ∪ B ∪ U . The group U consists of the objects for which
the name of the pattern is unknown. Let UA (UB) denote the set of objects U belonging to the pattern A
(B). Hence, U = UA ∪ UB. The function of rival similarity is calculated as

F (z,A|B,U) =
(
r(z,B ∪ UB) − r(z,A ∪ UA)

)
/
(
r(z,B ∪ UB) + r(z,A ∪ UA)

)
.

The absence of information which pattern the objects in U belong to makes it impossible to calculate
this quantity directly. We are forced to introduce additional assumptions:

(1) given an object z of the mixed sample, the nearest object in U belongs to the same pattern as z;

(2) the nearest rival object in U lies at the distance at most r∗;

(3) as the distance from an object to an pattern we take the distance from the object to the nearest
representative of this pattern.

The technique for calculating the function of rival similarity from a mixed sample under these as-
sumptions is described in [12]. This technique underlies the FRiS-TDR algorithm [13] which constructs
a system of stolps for a mixed sample. The share d of classified objects in the sample can take an arbitrary
value between 0 and 1. For d = 0, we in fact solve the taxonomy problem; for d = 1, the problem of
constructing decision rules; and, in the intermediate case, the semi-supervised learning problem. Thus,
we have developed a unified approach to these three problems on the basis of the FRiS-function.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 7 No. 2 2013



www.manaraa.com

282 ZAGORUIKO et al.

6. INCREASE OF THE COMPACTNESS OF DATA BY CENSORING OBJECTS.
THE FRiS-CENSOR ALGORITHM

We can simplify the description and increase compactness by refining the data, i.e., removing the
“untypical” objects which distort the representation of the sample and affect the choice of standards.
The significant differences in the properties of these objects from the properties of the remaining objects
of the pattern can be explained by their uniqueness, but more often the reason lies in the influence of
neglected factors like sensor failures, errors of data entry into the protocol, and others. Sometimes there
are objects which are not “mistaken” but lie on the periphery of the distribution and turn out deep in
the intersection zone with the neighboring patterns. They also can unjustifiably complicate the decision
rules.

In order to censor the outliers, we can apply the FRiS-Censor algorithm [7] which includes the FRiS-
Stolp algorithm as its part and uses the measure of FRiS-compactness of the patterns as the criterion
controlling the process of increasing the compactness of data.

Suppose that we are given some two patterns A and B expressed as tuples of MA and MB objects,
and put M = MA + MB . Estimate the compactness of A and B using (2) and (3). Let M∗ denote the
number of objects in the training sample remaining after the current sample reduction step. We will use
(M∗/M)α, with α ≥ 0, as the penalty for excluding objects from the training sample. Taking this into
account, estimate the FRiS-compactness HA|B of the patterns at each sample reduction step as

HA|B = (M∗/M)α
√

CA|BCB|A.

We choose the optimal value of α using the method of computer modelling by comparing the results
of application of the FRiS-Censor algorithm for different α values. Let d ∈ [0, 1] be the maximal share
of objects of the training sample which we can exclude, and m∗, the maximal number of objects in
a removed cluster.

We tested the FRiS-Censor algorithm on a model recognition problem of the two patterns each of
which amounted to the superposition of several (from 2 to 4) normally distributed clusters in a two-
dimensional space of features. We considered 10 distributions with different dispersions of clusters,
coordinates of expected values, and numbers of objects in the clusters, which influenced the FRiS-
compactness of the patterns. Every pattern was represented by 250 objects. For every distribution, we
100 times randomly divided the sample into two parts: the training part (50 objects of the first pattern
and 50 objects of the second pattern) and the control part (200 objects of each pattern). The total number
of experiments for various numerical values of the initial data reached 1000.

For all data, we ran the algorithm using the parameters: α = 0, 1, . . . , 9, m∗ = 4, and d = 0.15; thus,
out of 100 objects of the training sample at most 15 objects could be removed.

At every stage of the training sample reduction, we used the FRiS-Stolp algorithm to construct its
description as a collection of stolps. This enabled us to calculate the FRiS-compactness of the patterns.
The step of the algorithm on which this quantity was maximal was regarded as the best one. Using
the stolps chosen at this step, we constructed a decision rule and applied it to recognize 400 objects
not included into training. The reliability P of this recognition (in percent), averaged over all 1000
experiments, enabled us to determine the optimal value α = 5.

The experiments show that the increase of the FRiS-compactness of the training sample by
censoring objects in more than 99(%) of cases leads to a higher quality of recognition. The refined sample
is described by a simpler decision rule, which increases the reliability of recognition of the control sample.
Fig. 4 depicts the distributions of the reliability P (%) of the recognition of the control sample. The y-
axis corresponds to the absolute number of experiments N (out of 1000) in which this reliability P was
achieved. Curve 1 corresponds to reliability without a prior increase of the FRiS-compactness, and the
average value is equal to 91.6(%), while curve 2, to the reliability with the use of the increase of FRiS-
compactness. Here the average value is equal to 95.9(%). The average value d∗ for which the maximal
value of the criterion HA|B was attained equals 12.7(%).
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Fig. 4. The distribution of the reliability P of recognition of the control sample

7. EXCLUSION OF REDUNDANT FEATURES. THE FRiS-GRAD ALGORITHM

In the presently dominating problems, the number N of features exceeds the number M of objects by
orders of magnitude. Moreover, the information useful for solving a certain classification problem is usu-
ally present in several features n � N . The choice of these n features not only enables us subsequently
to substantially reduce the expense of computer resources, but also increases the compactness of the
patterns and the reliability of their recognition. The features can depend on each other, which makes
it impossible to choose from the estimates of individual informativity of each feature a subset as a list of
n most relevant features. If n is given then the exact solution would require checking all combinations
of n out of N features, which is impossible in real problems. For this reason, some heuristic algorithms
of directed search are used.

The GRAD algorithm [14], which we developed, uses the trick proposed in [15]. To begin with, the
brute-force search forms a system of relevant features, called granules, of small dimension. We use these
granules as input generalized features for the AdDel algorithm [10], which amounts to a combination of
the two available greedy algorithms: Addition [16] and Deletion [17]. These algorithms yield the optimal
solution at each step without guaranteeing the global optimum.

The AdDel algorithm in its forward step (the Addition algorithm) gathers a certain number of relevant
features (granules of features), and then excludes a part of them in an backward pass (the Deletion
algorithm). The Addition and Deletion algorithms keep alternating until a specified number n of features
(granules of features) is reached. In the FRiS-GRAD algorithm, which uses the granules instead of the
separate features, some features in the resulting system can occur more than once.

Our experiments show that, as the number of features increases, the quality of recognition firstly
increases, then the growth stops, and then it starts to decrease on account of the addition of redundant,
noisy features. The inflection point of the quality curve enables us to automatically determine the number
of relevant features in a system.

We can estimate the informativity of a feature or a system of features using different methods. The
quality of solution to this problem depends on how universal and suitable for the problem a criterion we
use. In the FRiS-GRAD algorithm [18] for the feature selection, we use the FRiS-compactness as the
informativity criterion. This criterion applies for every distribution and every ratio of M and N .

During the calculation of the FRiS-compactness we simultaneously choose a system of stolps.
Therefore, we can interpret the FRiS-GRAD algorithm as a data compression algorithm on accounting
the decrease in the number of objects in the sample and the number of features describing the sample.
We can then use this reduced description of the sample as a set of stolps in the space of relevant features
to solve the recognition problem. An object z belongs to the pattern the similarity to whose stolp in
the space of the chosen relevant features turns out the greatest, while we regard the similarity as the
probability that the decision made is correct.
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Table 1. The results of solving nine problems

Problem N M1/M2 Record results Results Rating

out of 40 FRiS–GRAD FRiS-GRAD

ALL1 12625 95/33 100.0 100.0 1

Leuk 7129 47/25 95.85 100.0 1

Prost 12625 50/53 90.19 93.13 1

DLBCL 7129 58/19 94.30 93.51 3

Colon 2000 22/40 88.60 89.52 1

ALL4 12625 26/67 82.06 83.87 1

Myel 12625 36/137 82.90 81.45 2

ALL3 12625 65/35 59.58 73.82 1

ALL2 12625 24/91 78.23 80.75 1

Middle 85.75 88.45

8. EXAMPLES OF THE INCREASE OF COMPACTNESS OF ILL-CONDITIONED DATA

In order to estimate the efficiency of the FRiS-GRAD algorithm, we ran a large-scale test on
nine medical problems. The objects were patients with various diseases and the features were gene
expressions obtained using biochips. A specific of these problems is that they are ill-conditioned: the
number of features exceeds by several orders of magnitude the number of objects in the sample.

We compared the results of the work of the algorithm to the previous results obtained by the four
most frequently used recognition algorithms (support vector machines, between-group analysis, Bayes
classifier, and k-nearest-neighbors) in the relevant subspaces chosen by 10 available feature selection
algorithms.

We estimated the quality of the algorithms applying cross-validation: we used 50(%) of the sample
for training, and the remaining 50(%) to estimate the reliability of recognition. We took all results
except those related to FRiS-GRAD from [19], which for every problem presents 40 distinct versions
of solutions obtained by all possible combinations of the algorithms. For the comparison, we chose the
best results in each problem.

Table 1 presents the results of our comparison. Here we show the names of the problems, the
dimensions N of the feature spaces, the ratios of the number M1 of objects of the first pattern to the
number M2 of objects of the second pattern, and three columns of results. The last column shows the
places taken by the results of solving all nine problems by the FRiS-GRAD algorithm.

The result obtained by each of 10 feature selection methods indicates its rating: the best result
receives rating 1, and the worst receives 10. Summing the ratings obtained by a method over all
problems, we find its overall rating. Table 2 presents the results of this calculation, showing in its last
rows the sum of the ratings of the places taken by FRiS-GRAD. We performed the same analysis using
four decision rules. Table 3 presents its results.

Our comparison shows the high efficiency of the FRiS-GRAD algorithm against the background of
the available analogs. The compressed description of the sample constructed by this algorithm yields
better results of recognition than the results achieved by other algorithms on the entire sample.
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Table 2. The sums of ratings of feature selection methods

Feature selection method Rating

Fold change 47

Between group analysis 43

Analysis of variance (ANOVA) 43

Significance analysis of microarrays 42

Rank products 42

Welch t-statistic 39

Template matching 38

Area under the ROC curve 37

maxT 37

Empirical Bayes t-statistic 32

FRiS-GRAD 12

Table 3. The sum of ratings of decision rules

Decision rule Rating

Between group analysis (BGA) 35

K-nearest-neighbors (kNN ) 32

Naive Bayes classification (NBC) 25

Support vector machines (SVM) 19

FRiS-Stolp 12

CONCLUSION

The passage from a binary relation to a ternary relation for describing a measure of rival similarity of
objects enables us to introduce substantial modifications into the methods of cognitive data mining.

The use of the FRiS-function enables us to simplify and improve the existing data mining algorithms,
increase their noise immunity, make them insensitive to the shape of the distribution of the patterns and
to the ratio of the numbers of objects and features.

We have managed to state and solve new data mining problems: to obtain a quantitative estimate
for compactness, to censor the training sample, to obtain a universal classification of objects with
an automatic choice of the number of clusters, and to select features using a new informativity criterion
with the automatic determination of the number of features in the system.
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